Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High Pressure Stripping for Post-Combustion CO₂ Capture

(DOE/NETL Agreement No. DE-FE0004360)

Yongqi Lu

Illinois State Geological Survey Prairie Research Institute University of Illinois at Urbana-Champaign

2012 NETL CO₂ Capture Technology Meeting

Pittsburgh, PA • July 9-12, 2012

Prime Contractor

- Illinois State Geological Survey (ISGS)
 - > 200 scientists and technical support staff
 - One of five scientific surveys at the Prairie Research Institute (PRI)-University of Illinois
 - Lead organization of Midwest Geological Sequestration Consortium Partnership
 - A group of chemical/environmental engineers working on carbon capture and other energy & environmental technology research

DOE/NETL

Project manager- Andrew Jones

Illinois Clean Coal Institute

Project manager – Joseph Hirschi

Illinois State Geological Survey-University of Illinois

- Bench- and lab-scale experimental studies
- Nick Devries, Yongqi Lu, Manoranjan Sahu, Massoud Rostam-Abadi, David Ruther, Qing Ye, Xinhuai Ye

Carbon Capture Scientific, LLC

- Risk analysis and techno-economic studies
- Kevin O'Brien, Scott Chen, Zhiwei Li

ICCI

1. Project Overview: Project Objectives

- Perform a proof-of-concept study aimed at generating process engineering and scale-up data to help advance the Hot-CAP process to a pilot-scale demonstration level within three years
 - Lab- and bench-scale tests of thermodynamics and reaction engineering data of major unit operations
 - Risk and techno-economic analysis studies

Project Duration and Budget

Project duration: 1/1/2011 - 12/31/2013

Budget:

	Budget, \$
DOE/NETL	1,291,638
ICCI (cash)	201,000
UIUC (in kind)	134,357
CCS, LLC (in kind)	47,713
Total	1,674,708

(Cost share is ~23%)

2. Technology Fundamentals/ Background: Hot Carbonate Absorption Process with High Pressure Stripping Enabled by Crystallization (Hot-CAP)

- ❑ Absorption at 60-80°C
- □ Working capacity of 40wt% PC: ~15-40% carbonate-to-bicarbonate (CTB) conv.
- Crystallization at near room temperature (~30°C)
- ❑ Stripping of bicarbonate slurry at 10-40 atm

Major Reactions

 CO_2 absorption at $60-80^\circ C$: $CO_2 + H_2O + K_2CO_3 = 2KHCO_3$ CO_2 desorption $at \ge 140^\circ C$: $KHCO_3 = CO_2(g) \uparrow +H_2O + K_2CO_3$

Crystallization at $30^{\circ}C$: KHCO₃ = KHCO₃(s) \downarrow

Hot-CAP vs. MEA

Items	MEA	Hot-CAP
Solvent	30wt% MEA	40wt% K ₂ CO ₃
Solvent degradation	Y	Ν
Corrosion	Y	Less significant
Absorption temperature	40-50°C	60-80°C
Stripping temperature	120°C	140-200°C
Stripping pressure	1.5-2 atm	>10 atm
Phase change bw absorb. and stripping	N	Crystallization
	-	
FGD required	Y	N

- □ Low compression work and low stripping heat (high CO_2/H_2O ratio)
- Low sensible heat
 - Comparable working capacity to MEA but low Cp (1/2)
- Low heat of absorption
 - > 7-17 kcal/mol (crystallization heat included) vs. 21 kcal/mol for MEA

Energy Use Comparison between Hot-CAP and MEA

Items	MEA	Hot-CAP
Energy Consumption		
CO ₂ desorption		
Heat of absorption (kJ/kgCO ₂)	1,870	1,600
Sensible heat (kJ/kgCO ₂)	990	300
Stripping heat (kJ/kgCO ₂)	690	200
Electricity equivalent (kWh/ kg CO ₂)	0.22	0.13
Compression work (kWh/ kg CO ₂)	0.09	0.03
Other load (kWh/ kg CO ₂)	0.04	0.04
Total electricity use(kWh/kg CO ₂)	0.35	0.20

□ A reduction of ~40% electricity losses compared to MEA

3. Project Progress and Current Status: Project Tasks

Task 1. Project planning & management	 Task 4. Phase equilibrium & kinetics of high pressure stripping VLE data of slurry system Stripping column test
Task 2. Kinetics of CO ₂ absorption	Task 5. Kinetics of sulfate
 Absorption kinetics 	reclamation
 Absorption column test 	
Task 3. Crystallization kinetics &	Task 6. Techno-economic evaluation
solubility of bicarbonate	 Risk mitigation study
 KHCO₃ crystallization test 	 Process modeling/ simulation
 NaHCO₃ crystallization test 	 Economic evaluation

Work Activities from 1/1/2011 thru 6/30/2012

Tasks/subtasks on project schedule	Comments	
1.1/1.2 <u>Absorption</u> in $K_2CO_3/KHCO_3$ (PC) solution without and with promoters	(1) Kinetics obtained for reference PC; (2) effective promoters/catalysts identified; (3)	
(3/1/11-3/31/12)	impact of sulfate investigated	
2.1/2.2 KHCO ₃ <u>crystallization</u> equipment setup, test, impact of K_2SO_4 on crystallization (4/1/11-6/30/12)	 (1) Results proved feasibility of KHCO₃ crystallization under Hot-CAP conditions; (2) morphology and crystal PSD analysis provided guideline for crystallizer design; (3) impact of promoters and sulfate identified 	
3.1/3.2 <u>VLE measurement</u> of K ₂ CO ₃ /KHCO ₃ slurry (7/1/11-6/30/12)	(1) A high pressure setup and experimental approach established; (2) VLE data obtained	
5.1/5.2 <u>Risk mitigation studies</u> and process simulation/modeling. (1/1/11-12/31/13)	 (1) Vendor discussions resulted in a new process design to mitigate fouling risk in heat exchanger and crystallizer cooler; (2) process simulation studies in progress as scheduled 	

3.1 Studies of Absorption Kinetics: Stirred Tank Reactor (STR) Setup

(PrC: Pressure controller; TC: Thermal couple; PG: pressure gauge DAQ: Data acquisition)

□ Instant flux of CO₂ absorption

$$J_{CO2} = \frac{dP_{CO2}}{dt} \frac{V_g}{R T A_{GL}}$$

Intrinsic Rates of Absorption Determined from STR Experiments: PC vs. Amines

□ Major absorption reaction of CO₂ in PC solution

 $CO_2 + OH^- \xrightarrow{k_1} HCO_3^-$ rate : $r_1 = k_1[CO_2][OH^-]$

Reactant	Rate constant <i>k,</i> L/mol/s	Concentration, mol/L	Rate (<i>k</i> [Reactant]), 1/s
OH-	1.57x10 ⁶ (at 70°C)	4.33×10 ⁻³	<i>k</i> ₁ [OH] = 6,820
MEA*	7,600 (at 25°C)	5	<i>k</i> ₂ <i>[MEA]</i> = 38,000
MDEA	4.3 (at 25°C)	5	$k_3 [MDEA] = 21.5$

 $CO_2 + RNH_2 \xrightarrow{k_2} H^+ + RNHCOO^-$ rate : $r_2 = k_2[CO_2][MEA]$

 $CO_2 + RRCH_3N + H_2O \xrightarrow{k_3} RRCH_3NH^+ + HCO_3^-$ rate: $r_3 = k_3[CO_2][MDEA]$

- **Rates into potassium carbonate (PC, K_2CO_3) vs. amines**
 - Intrinsic reaction rate into 40wt% PC at 70°C is ~6 times lower than 5M MEA
 - > Henry's constant of CO₂ (solubility) is 4 times lower at 75°C than 25° C

CO₂ Absorption into 40wt% PC with Inorganic Catalysts

Enhancement factor (E)	4wt% CAT1	4wt% CAT2
E (60°C)	2.16	2.36
E (70°C)	1.86	2.00
E (80°C)	1.88	2.12

- Two inorganic catalysts, CAT1 and CAT2, identified more effective than other tested inorganic catalysts
- □ Addition of 4 wt% CAT1 or CAT2 increased rates by ~2 times at 60, 70, 80°C

CO₂ Absorption into 40wt% PC with Organic Promoters

- Rates promoted by amines 3.5-30 times compared to reference PC
- □ Rates promoted by amino acid salts by 3-11 times
- Rates most effectively promoted with 1M PZ, 1M AMP and 1M HDA

DEA: diethanolamine; AMP: 2-amino-2-methyl-1-propanol; PZ: piperazine; HDA: hexamethylene diamine; HA: hexylamine

Rates of CO₂ Absorption: Promoted PC vs. Amines

- Rates into 5M MEA with 0.2 mol CO₂/mol at 50°C were 10-35 times > reference PC40-20 at 50°C
- Rates into PC40-20 with 1M PZ, 1M AMP, or 1M HAD at 70°C comparable to or higher than 5M MEA at 50°C

Absorption Column Test in Progress

3.2 Studies of Bicarbonate Crystallization

An automated calorimetric reactor instrument (Reactor double-jacked for precise T control; heat measurable during phase transition and reaction; in-line turbidity monitoring)

\square KHCO₃ crystallization from PC solutions:

- 40wt% PC with 40% CTB conversion (PC40-40) without and with promoters
- Cooling PC solutions from 70 to ~30°C

Effect of Cooling Temperature Profile on KHCO₃ Crystallization

 \Box Temperature and turbidity break points occurred at 54 \pm 3°C

- Similar between linear, concave, and convex cooling processes
- Similar between cooling rates of 1°C /min and 0.5°C /min (data not shown)
- □ Massive crystallization started at ~54°C and proceeded continuously
- Rate of crystallization controlled by cooling rate

Crystal Morphology & Structure during Crystallization

SEM images of crystal solids obtained from PC40-40 during linear cooling from 70°C

Crystals went through a growth process

difference was not significant

> Crystal particles in hexagonal prism shape and grew in size during cooling Cooling at 0.5°C/min resulted in slightly larger particle size than 1°C /min but

20

Crystal Particle Size Change during Crystallization

Histograms of crystal particle size distribution during linear cooling from 70 to 30°C at 1°C/min

- Crystal particle size increased proportionally with decreasing temperature (or increasing time)
- At 30°C (in 40 min), mode of crystal particle size occurred at 350-400μm

Crystallization Kinetics Measurement under Mixed Suspension-Mixed Product Removal (MSMPR) Mode

MSMPR experiments to determine crystallization rate constants (nucleation and growth) from crystal particle size distribution (PSD) analysis

MSMPR Results: Examples

Curves fitted to determine growth and nucleation kinetics, e.g.,

Average growth rate (
$$G_{av}$$
): $G_{av} = \frac{M_T}{3\rho_s \tau k_v \int_0^\infty n(L)L^2 dL}$

5

M_T: the suspension density,
 ρ_s: the solid density,
 k_v: the volume shape factor,
 ε: the stirrer rpm

> Total nucleation rate (B_{TOT}): $B_{TOT} = \tau^{-1} \int_0^\infty n(L) dL$

3.3 Vapor Liquid Equilibrium (VLE) Measurement of K₂CO₃/KHCO₃ Slurry

Parr Instrument Company, model 4531 (1 liter volume, maximum 1,900 psi (131 bar) at 275 C)

- Gas analysis using a GC-based method
- Liquid analysis using a back-titration method
- □ VLE measurement of bicarbonate slurry (40-70wt%) at 120-200°C and 1-40 bar

VLE data for 40wt% K₂CO₃/KHCO₃ Solution at 140-180°C

P_{CO2} increased significantly with increasing temperature and CTB conversion
 P_{water} decreased with increasing CTB conversion

VLE data for 50%wt K₂CO₃/KHCO₃ solution at 140-200°C

- □ P_{CO2} reached ~300 psia at ~80% CTB conversion at 200°C
- P_{total} attained ~370 psia
- Results demonstrated that producing a high pressure CO₂ stream is feasible in Hot-CAP

3.4 Technical Risks of Hot-CAP Process

Potential technical risks:

- □ A. Insufficient rate of CO₂ absorption
- □ B. Stripping pressure not high enough (e.g.,<10 atm)
- C. Heat exchanger and crystallizer fouling
- D. Insufficient cooling rate in crystallizer affects cost/space
- E. Stripper required to handle slurry and high pressure

Modified Crystallizer Design Option

- □ Conventional single-crystallizer design requires a large ∆T between inflow and outflow, undesirable for heat recovery from inflow solution
- Multiple crystallization tanks/modules proposed with a crystallizer vendor to reduce ∆T between inflow and outflow of each crystallizer

4. Plans for Future Work/Development

Research Activities:

- Activity 1: Bench-scale absorption and high pressure stripping column tests
- □ Activity 2: Combined SO₂ removal and CO₂ capture in Hot-CAP
- Activity 3: Techno-economic studies
 - Risk mitigation of the high pressure stripper design
 - Process simulation and cost analysis

Process development:

- Continued interaction with equipment vendors to mitigate risks
- Efforts designed to assure lab/bench scale system is "compatible" with power plant environment
- Discussion of designs and results with engineering groups at utilities and other industries

- U.S. Department of Energy/ National Energy Technology Laboratory under Agreement No. DE-FE0004360
- Illinois Department of Commerce and Economic Opportunity through the Office of Coal Development and the Illinois Clean Coal Institute under Project No. 11/US-6